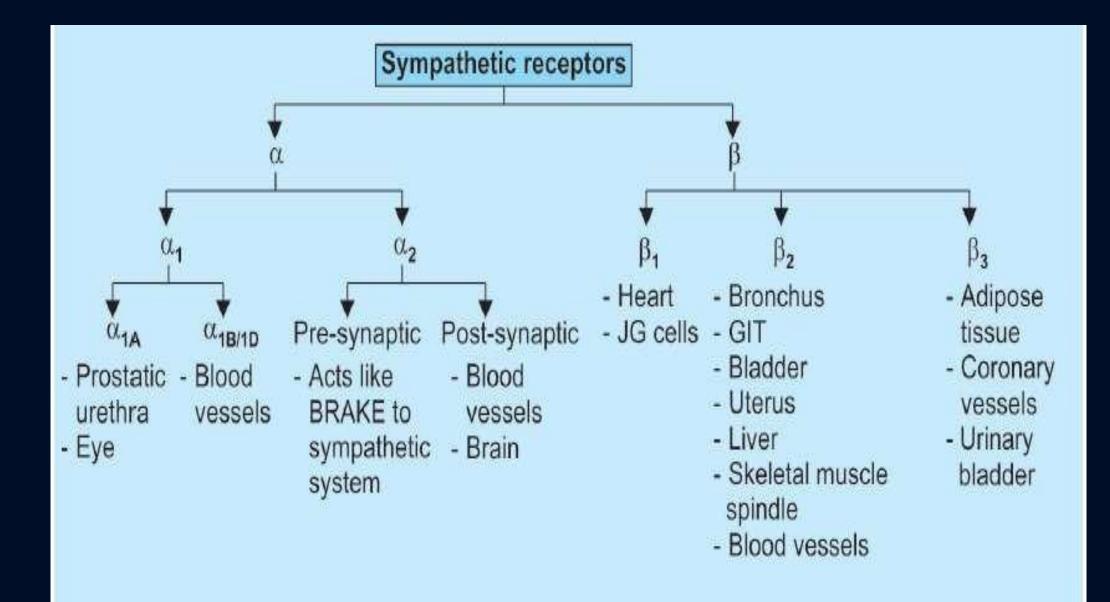

ADERENERGIC ANTAGONIST


CLASSIFICATION

UNIT-5th (3-4)

ALPHA AND BETA RECEPTORS

- Adrenergic receptors are membrane bound G-protein coupled receptors which function primarily by increasing or decreasing the intracellular production of second messengers cAMP or IP3/DAG. In some cases the activated G-protein itself operates K+ or Ca2+ channels, or increases prostaglandin production.
- Ahlquist (1948), on the basis of two distinct rank order of potencies of adrenergic agonists classified adrenergic receptors into two types α and β. This classification was confirmed later by the discovery of selective α and β adrenergic antagonists.

DIFFERENCES BETWEEN ALPHA AND BETA ADRENERGIC RECEPTORS

TABLE 9.1 Differences between α and β adrenergic receptors		
	α	β
1. Rank order of potency of agonists	*Adr <u>></u> NA > Iso	Iso > Adr > NA
2. Antagonist	Phenoxybenzamine	Propranolol
3. Coupling protein	Gq/Gi/Go	Gs
4. Effector pathway	IP ₃ /DAG↑, cAMP \downarrow , K ⁺ channel ↑	cAMP↑, Ca²⁺ channel ↑

* Though inherently NA is equipotent to Adr on α receptors, in test systems with intact neuronal reuptake, it appears less potent due to faster reuptake.

TABLE 9.2Differences between β_1 , β_2 and β_3 receptors			
	β_1	β_2	β_3
1. Location	Heart, JG cells in kidı	Bronchi, blood ney vessels, uterus, liv g.i.t., urinary tract,	
2. Selective a	gonist Dobutamine	Salbutamol, terbuta	alin BRL 37344
3. Selective a	ntagonist Metoprolol, Atenolol	ICI 118551 α-methyl propranol	CGP 20712A (also β_1) lol ICI 118551 (also β_2)
4 Relative po of NA and	· —	NA << Adr	NA > Adr

TABLE 9.3 Diffe	rences between α_1 and α_2 receptors	
	α_{I}	α_2
Location	Postjunctional on effector organs	Prejunctional on nerve ending (α_{2A}) , also postjunctional in brain, pancreatic β cells and extrajunctional in certain blood vessels, platelets
Function subserved	GU Smooth muscle-contraction Vasoconstriction Gland-secretion Gut-relaxation Liver-glycogenolysis Heart-arrhythmia	Inhibition of transmitter release Vasoconstriction Decreased central sympathetic flow Decreased insulin release Platelet aggregation
Selective agonist	Phenylephrine, Methoxamine	Clonidine
Selective antagonist	Prazosin	Yohimbine, Rauwolscine
Coupling protein	Gq	Gi/Go
Effector pathway	IP₃/DAG ↑ Phospholipase A₂ ↑—PG release	cAMP ↓ K⁺ channel ↑ Ca²⁺ channel ↓ or ↑ IP₃/DAG ↑
GU: Genitourinary		

•The actions of a particular sympathomimetic amine depend on its relative activity at different types of adrenergic receptors.

Adr : $\alpha_1 + \alpha_2 + \beta_1 + \beta_2$ and weak β_3 action NA : $\alpha_1 + \alpha_2 + \beta_1 + \beta_3$ but no β_2 action Iso : $\beta_1 + \beta_2 + \beta_3$ but no α action

Sympatholytic Drugs

•These drugs may act by competitive antagonists at α and/or β -adrenergic receptors

ALPHA BLOCKERS
BETA BLOCKERS
ALPHA + BETA BLOCKERS.

α **ADRENERGIC BLOCKING DRUGS**

•These drugs inhibit adrenergic responses mediated through the α adrenergic receptors without affecting those mediated through β receptors.

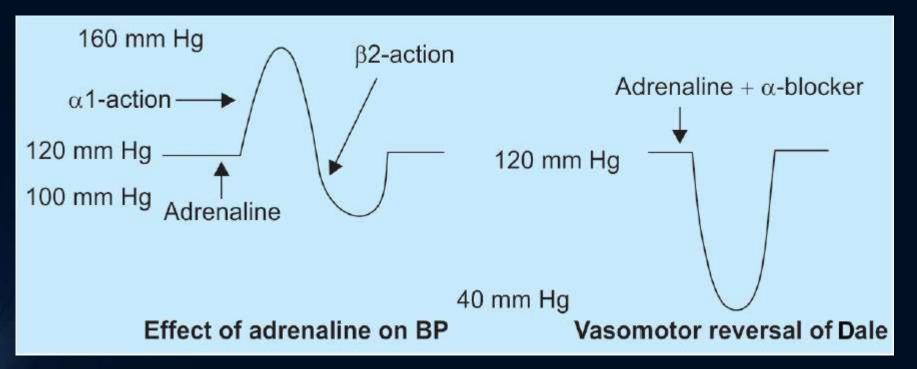
CLASSIFICATION

- I. Nonequilibrium type
 - (i) β-Haloalkylamines—Phenoxybenzamine.
- II. Equilibrium type (competitive)

A. Nonselective

- (i) Ergot alkaloids—Ergotamine, Ergotoxine
- (ii) Hydrogenated ergot alkaloids—Dihydroergotamine (DHE), Dihydroergotoxine
- (iii) Imidazoline-Phentolamine
- (iv) Miscellaneous-Chlorpromazine
- B. α₁ selective—Prazosin, Terazosin, Doxazosin, Alfuzosin, Tamsulosin
- C. α_2 selective—Yohimbine

O ALPHA BLOCKERS


Nonselective α-Blockers

•**Phenoxybenzamine is an** *irreversible antagonist whereas phentolamine and tolazoline are reversible* blockers of α1 and α2 receptors. These agents result in *vasodilatation and postural hypotension (due* to antagonism of vasoconstrictor α1 receptors).

•Use of these drugs before adrenaline results in **vasomotor reversal of Dale.**

•Intravenous injection of adrenaline normally causes increase in blood pressure (α effect) followed by prolonged fall (β 2 effect). If it is administered after giving α blockers, only fall in BP is seen (vasomotor reversal of Dale).

Vasomotor reversal of dale

•*Phentolamine and tolazoline are preferred agents for the treatment of hypertensive crisis in clonidine withdrawal and cheese reaction.*

Equilibrium type (competitive)

Nonselective

•Ergot alkaloids are the adrenergic antagonists with which Dale demonstrated the vasomotor reversal phenomenon.

•The α blockade produced by ergot alkaloids is low grade and clinically not useful. Their principal use is in migraine *Dihydroergotoxine has been used as a cognition* enhancer .

•Selective α1-Blockers

•These drugs (*prazosin, terazosin, doxazosin and alfuzosin*) cause decrease in blood pressure with lesser tachycardia than non selective blockers (due to lack of α_2 blocking action, sympathetic outflow is not increased).

•Selective α1 blockers have **favorable effect on lipid profile (increase HDL and** decrease LDL andTG)

• Due to relaxation of smooth muscle in the neck of urinary bladder and prostatic urethra, urinary flow is improved by these drugs. Therefore, selective α1 blockers are *drugs of choice for patients with hypertension and benign hyperplasia of prostate (BHP).*

• Prazosin (and other α_1 blockers) are useful for the treatment of scorpion sting.

•Major adverse effect of these drugs is *postural hypotension. It is seen with first few* doses or on dose escalation (*First dose effect*). *If used continuously, tolerance develops* to this adverse effect. **Inhibition of ejaculation is another side effect of these agents**

Tamsulosin and Silodosin selectively inhibits subtype of α1 receptors present in the prostate (α1A) without affecting those present in the blood vessels. These are therefore preferred for the treatment of BHP because of their reduced propensity to cause postural hypotension.

Selective α_2 -Blockers

Yohimbine An alkaloid from the West African plant Yohimbehe. It is a relatively selective α_2 blocker with short duration of action.

There are no valid indications for clinical use of yohimbine.

BETA BLOCKERS

- The beta blockers are classified in two system they are :
- NON SELECTIVE AND CARDIOSELECTIVE
- BETA BLOCKERS INTO 3 GENERATIONS

CLASSIFICATION

Nonselective (β_1 and β_2)

- a. Without intrinsic sympathomimetic activity Propranolol, Sotalol, Timolol.
- b. With intrinsic sympathomimetic activity Pindolol
- c. With additional α blocking property Labetalol, Carvedilol

Cardioselective (B₁)

Metoprolol, Atenolol, Acebutolol, Bisoprolol, Esmolol, Betaxolol, Celiprolol, Nebivolol The pharmacology of propranolol is described as prototype. Another system classifies β blockers into 3 generations.

First generation (older, nonselective) Second generation $(\beta_1 \text{ selective})$

Third generation (with additional α blocking and/or vasodilator property)

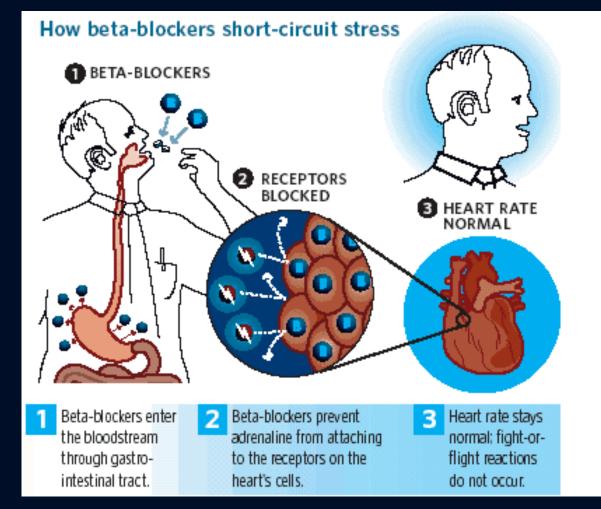
Propranolol Timolol Sotalol Pindolol Metoprolol Atenolol Acebutolol Bisoprolol Esmolol

Labetalol Carvedilol Celiprolol Nebivolol Betaxolol

Nonselective β-Blockers [First generation β-blockers)

•propanolol, timool, nadolol, pindolol, alprenolol and Oxprenolol.

Important effects of these drugs are:


•Myocardial oxygen demand is decreased due to blockade of β_1 receptors in the heart (*useful in classical angina*) but coronary vasoconstriction can occur due to blockade of vasodilatory β_2 receptors (*contraindicated in variant angina*).

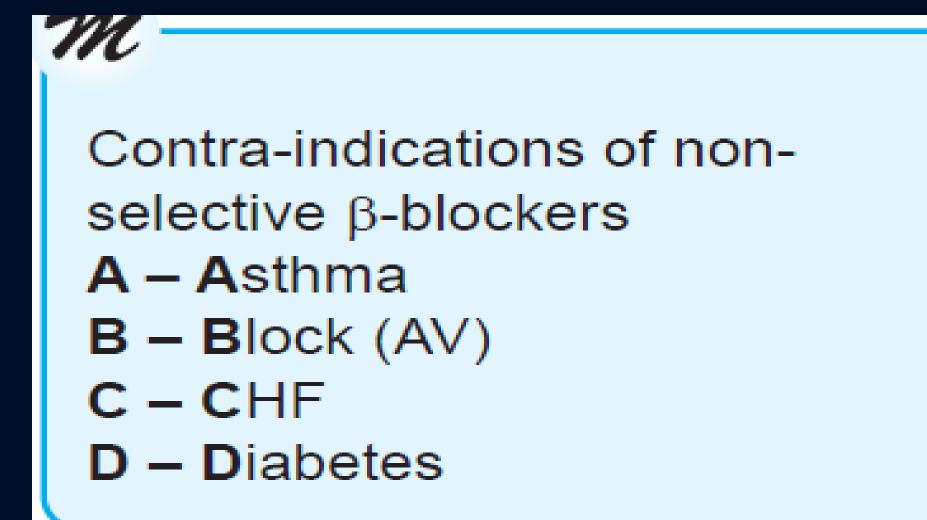
- Decrease in blood pressure (mainly due to 61 blockade).
- •Bronchoconstriction may occur due to blockade of 62 receptors (contraindicated in asthmatics).
- Dyslipidemia characterized by increase in LDL and decrease in HDL may be seen (82 blockade).

•Decreased chances of reversal of hypoglycemia in patients on insulin and other hypoglycemic agents (82 blockade).

Decreased production of aqueous humor (useful in glaucoma) by β2 blocking action.
Impaired exercise capacity due to blockade of β2 receptors in blood vessels of skeletal muscle.

• Abolishes sympathetic tremors (82 blockade).

Limitations of Non-selective β -Blockers


• Contraindicated in bronchial asthma due to their *bronchoconstrictor action*.

•Hypoglycemia is commonly observed in diabetic patients receiving insulin and oral hypoglycemic drugs. Symptoms of hypoglycemia (like tachycardia, sweating and tremors) are due to sympathetic stimulation that act as warning signs for the patient. *Beta blockers mask these symptoms* (*except sweating because it is mediated by sympathetic cholinergic system*) and patient can go directly into coma. Further, these agents delay the recovery from hypoglycemia due to inhibition of 62 mediated hyperglycemia. These drugs are therefore contraindicated in diabetic patients.

•On long term use non selective β blockers can *adversely affect serum lipid profile and can cause glucose intolerance.*

• By causing vasoconstriction (β2 is vasodilatory), these drugs can worsen peripheral vascular disease (contraindicated in Raynaud's disease).

• These drugs can *impair exercise capacity due to blockade of skeletal vascular* β2 receptors.

Cardioselective (Selective β_1) β -Blockers [Also known as second generation β -blockers)

The drugs can be remembered as:

* New	– Nebivolol (Most cardioselective)
* B eta	– Betaxolol
* Blockers	– B isoprolol
* Acting	– Acebutolol
* Exclusively	– Esmolol
* A t	– A tenolol
* Муо	– Metoprolol
* C ardium	– C eliprolol

Advantages of cardioselective β -blockers

- Safe in asthma
- Safe in diabetes
- Safe in PVD
- Less likely to impair exercise capacity
- Less risk of hyperglycemia
- Less risk of dyslipidemia

Beta-Blockers with Intrinsic Sympathomimetic Activity (ISA)

The drugs can be remembered as:

* COntain	– Celiprolol, Oxprenolol
* Partial	– Pindolol, Penbutolol
* Agonistic	– Alprenolol
* Activity	–Acebutolol

•These drugs are partial agonists at β_1 receptors (apart from having β blocking property). These are preferred in the patients prone to develop severe bradycardia with β blocker therapy. However, these drugs are less useful in angina (because of stimulation of heart by β_1 receptors.

Beta-Blockers with Membrane Stabilizing Activity

The drugs are remembered as:

*Possess	– Propanolol (<i>maximum</i>)
*Membrane stabilizing or	– Metoprolol
*Local	– Labetalol
*Anaesthetic	– Acebutolol
* P roperty	– Pindolol

•These drugs possess Na+ channel blocking (local anaesthetic) activity. It can contribute to *antiarrhythmic action*. *These drugs should be avoided in glaucoma due to the risk of corneal* anaesthesia.

Lipid Insoluble β-Blockers

•These agents are mainly *excreted by kidney and are therefore contraindicated in renal failure.*

•Most of these have *long duration of action*

*Not	 – Nadolol (longest acting β blocker)
*Soluble	- Sotalol
*A	– Atenolol
	- Acebutolol
*В	- Betaxolol
	– Bisoprolol
* C	– Celiprolol

m
Beta blockers contra-indicated in renal failure
A – Atenolol N – Nadolol S – Sotalol
e eotaioi

USES OF β -BLOCKERS

Cardiac (due to β_1 blockade)	Extra cardiac (due to β_2 blockade)
Hypertension	Pheochromocytoma (after α blockade)
Classical angina	Hyperthyroidism
Myocardial infarction	Performance anxiety
Supraventricular arrhythmias	Tremors
Chronic CHF	Akathisia
Hypertrophic obstructive cardiomyopathy (DOC)	Prophylaxis of migraine
Emergency management of symptoms of TOF	Glaucoma (timolol and betaxolol)
Mitral valve prolapse	Alcohol and opioid withdrawal
	Prophylaxis of bleeding in portal hypertension

COMBINED ALPHA AND BETA BLOCKERS

•Labetalol and carvedilol are the important drugs in this group. These are useful for the control of hypertensive episodes in pheochromocytoma.

•Carvedilol is the most commonly used beta blocker in chronic CHF due to its antioxidant and antimitogenic properties

THANKYOU