

Introduction

- Metabolism is the term used to describe
 - The interconversion of chemical compounds in the body
 - The pathways taken by individual molecules,
 - Their interrelationships, and the mechanisms that regulate the flow of metabolites through the pathways
- It falls mainly in 3 categories: catabolism, anabolism and amphibolic pathways

Anabolic pathways

- Involved in the synthesis of larger and more complex compounds from smaller precursors
- Ex: Synthesis of protein from amino acids and the synthesis of reserves of tri-acylglycerol and glycogen.
- Anabolic pathways are **endothermic.**

• Catabolic pathways

- Involved in the breakdown of larger molecules, commonly involving oxidative reactions;
- They are **exothermic**, producing reducing equivalents, and, mainly via the respiratory chain

Amphibolic pathways

- Occur at the "crossroads" of metabolism, acting as links between the anabolic and catabolic pathways
- Ex: Citric acid cycle

- A 70-kg adult human being requires about 1920-2900 kcal from metabolic fuels each day, depending on physical activity.
- This energy requirement is met from
 - Carbohydrates (40%-60%)
 - Lipids (mainly triacylglycerol, 30%-40%)
 - Protein (10%-15%), as well as alcohol.
- There is a constant requirement for metabolic fuels throughout the day
- Most people consume their daily intake of metabolic fuels in two or three meals, so there is a need to form reserves

- Reserves of
 - Carbohydrate: glycogen in liver and muscle
 - Lipid: triacylglycerol in adipose tissue
 - Labile protein
- If the intake of metabolic fuels is consistently greater than energy expenditure.
 - Surplus is stored, largely as triacylglycerol in adipose tissue,
 - Leading to the development of **obesity**
- If the intake of metabolic fuels is consistently lower than energy expenditure
 - Reserves of fat and carbohydrate, and amino acids are used for energy-yielding metabolism
 - This leads to emaciation, wasting, and, eventually, death

All the products of digestion are metabolized to acetyl-CoA - oxidized by the citric acid cycle

Carbohydrate Metabolism

- Glucose major fuel of most tissues
- Metabolized to pyruvate aerobically and lactate anaerobically by the pathway of glycolysis which further gets reduced to acetyl-CoA
- Enter the Citric acid cycle formation of ATP in the process of oxidative phosphorylation

© 2012 W. H. Freeman and Company

Carbohydrate Metabolism

- Glucose may also undergo Glycogenesis synthesis of the storage polymer glycogen in skeletal muscle and liver
- It may also enter **Pentose Phosphate Pathway (PPP)**
 - source of reducing equivalents (NADPH) for fatty acid synthesis
 - ribose for nucleotide and nucleic acid synthesis
- **Pyruvate and intermediates** of the Citric Acid Cycle carbon skeletons for the synthesis of nonessential **amino acids**
- Acetyl-CoA is the precursor of fatty acids and cholesterol (steroid hormones synthesized in the body)
- Gluconeogenesis process of synthesizing glucose from noncarbohydrate precursors such as, lactate, amino acids, and glycerol

FUNCTIONS OF CARBOHYDRATES

- Main source of energy in the body. Energy production from carbohydrates will be 4 k calories/g (16 k Joules/g).
- Storage form of energy (starch and glycogen).
- Excess carbohydrate is converted to fat.
- Glycoproteins and glycolipids are components of cell membranes and receptors.
- Structural basis of many organisms. For example, cellulose of plants, exoskeleton of insects etc.

Lipid Metabolism

- Source of long-chain fatty acids
 - either dietary lipid
 - Or de novo synthesis from acetyl-CoA
- Fatty acids may either
 - gets oxidized to acetyl CoA (β-oxidation)
 - esterified with glycerol forming triacylglycerol body's main fuel reserve

Lipid Metabolism

- Acetyl-CoA formed by β-oxidation of fatty acids may undergo three fates
 - oxidized via the citric acid cycle
 - precursor for synthesis of cholesterol and other steroids.
 - In the liver, it is used to form the ketone bodies, acetoacetate and 3-hydroxybutyrate - important fuels in prolonged fasting and starvation.

Amino Acid Metabolism

- AA forms metabolic intermediates by **transamination** using the amino group from other amino acids
- Deamination removal of amino nitrogen as urea via Urea cycle,
- The carbon skeletons that remain after **transamination**
 - oxidized via the citric acid cycle,
 - used to synthesize glucose (gluconeogenesis)
 - form ketone bodies or acetyl CoA, which may be oxidized or used for synthesis of fatty acids
- AA may also be precursors of other compounds
 - Purines and pyrimidines,
 - Hormones such as epinephrine and thyroxine,
 - Neurotransmitters.

Amino Acid Metabolism

Simplified Urea Cycle

Summary

Organ	Major Pathways	Main Substrates	Major Products Exported	Specialist Enzymes
Liver	Glycolysis, gluconeogenesis, lipogenesis, β-oxidation, citric acid cycle, ketogenesis, lipoprotein metabolism, drug metabolism, synthesis of bile salts, urea, uric acid, cholesterol, plasma proteins	Nonesterified fatty acids, glucose (in fed state), lactate, glycerol, fructose, amino acids, alcohol	Glucose, triacylglycerol in VLDL, ^a ketone bodies, urea, uric acid, bile salts, cholesterol, plasma proteins	Glucokinase, glucose- 6-phosphatase, glycerol kinase, phosphoenolpyruvate carboxykinase, fructokinase, arginase, HMG CoA synthase, HMG CoA lyase, alcohol dehydrogenase
Brain	Glycolysis, citric acid cycle, amino acid metabolism, neurotransmitter synthesis	Glucose, amino acids, ketone bodies in prolonged starvation	Lactate, end products of neurotransmitter metabolism	Those for synthesis and catabolism of neurotransmitters

Summary

Heart	β-Oxidation and citric acid cycle	Ketone bodies, nonesterified fatty acids, lactate, chylomicron and VLDL triacylglycerol, some glucose	-	Lipoprotein lipase, very active electron transport chain
Adipose tissue	Lipogenesis, esterification of fatty acids, lipolysis (in fasting)	Glucose, chylomicron and VLDL triacylglycerol	Nonesterified fatty acids, glycerol	Lipoprotein lipase, hormone-sensitive lipase enzymes of the pentose phosphate pathway
Fast twitch muscle	Glycolysis	Glucose, glycogen	Lactate, (alanine and ketoacids in fasting)	_
Slow twitch muscle	β-Oxidation and citric acid cycle	Ketone bodies, chylomicron and VLDL triacylglycerol	-	Lipoprotein lipase, very active electron transport chain
Kidney	Gluconeogenesis	Nonesterified fatty acids, lactate, glycerol, glucose	Glucose	Glycerol kinase, phosphoenolpyruvate carboxykinase
Erythrocytes	Anerobic glycolysis, pentose phosphate pathway	Glucose	Lactate	Hemoglobin, enzymes of pentose phosphate pathway

