LESSON PLAN

Name of Faculty	:	JYOTI SINGLA
Discipline	:	Electronics & Communication Engg.
Semester	:	2 nd
Subject	:	Electronic Devices & Circuits
Lesson Plan Duration	:	16 weeks

Work load (Lecture /Practical) per week (in hours): Lectures—03, Practical—03

		Theory	Practical		
Week	Lecture Day	Topic (Including Assignment/ Test	Practical Day Topic		
	1	Review of Amplifiers			
1 st	2	Need for multistage amplifier & Gain of multistage amplifier	1	Review of Lab/ Practicals.	
	3	RC coupled multistage amplifier, its frequency response and bandwidth			
	4	Transformer coupled Multistage Amplifier, its frequency response and bandwidth.		Plot the frequency response of two stage RC coupled	
2nd	5	Direct coupled multistage amplifier, its frequency response and bandwidth.	2	amplifier and calculate the	
Zna	6	Difference between voltage and power amplifiers, Importance of impedance matching in amplifiers.		bandwidth and compare it with single stage amplifier.	
	7	Class A & Class B amplifiers,			
3rd	8	Class AB and Class C amplifiers, collector Efficiency & Distortion in Class A, B, C amplifiers.		To measure the	
	9	Single ended Power amplifiers, Graphical method of calculation (without derivation) of output power, heat dissipation curve an importance of heat sinks.		amplifier at 1 KHz.	
	10	Push Pull Amplifier			
4 th	11 Complementary Symmetry Push-Pull amplifier.		4	Revision / File Assessment	
	12	Assignment topic/Test/Quiz.			
5 th	Basic principal and types of feedback,13derivation of expression for gain of an amplifier employing feedback		5	To measure the voltage gain of emitter follower	
	14	Effect of feedback (negative) on gain,		circuit and plot its	

		stability, distortion and bandwidth of		frequency.	
		BC coupled amplifier with emitter			
	15	bypass capacitor.			
	16	Emitter follower amplifier and its application.			
6 th	17	Assignment – Topic & Class work Checking	6	Revision	
	18	Expert lecture			
	19	Sessional Test			
7 th	20	Use of positive feedback, Bark-hausen criterion for oscillations.	7	response curve of Hartley and Colpitt's Oscillator	
	21	Working principle of Tunned Collector Oscillator			
	22	Working principle of Hartley and Colpitt's Oscillator Circuits.		Plot the frequency	
8 th	23	Working principle of Phase shift and wein- bridge Oscillator Circuits.	8	phase shift and Wein bridge Oscillator.	
	24	Working principle of crystal Oscillator Circuit.			
	25	Revision		Revision	
	26	Series and parallel resonant circuit and			
9 th	20	bandwidth of resonant circuits.	9		
	27	Single tuned voltage amplifier & its			
	<i>L</i> /	frequency response.			
	28	Double tuned voltage amplifier & its frequency response.		Use of IC 555 as monostable	
10^{th}	29	Expert Lecture	10	multivibrator and	
	30	Working principle of transistor as switch.		observe the output for different values	
	31	Concept of multi-vibrator: a stable, mono-stable, and bistable and their applications.		Use of IC as a	
11 th	32	Concept of multi-vibrator: a stable, mono-stable, and bistable and their applications.	11	stable multivibrator and observe the output	
	33	Concept of multi-vibrator: a stable, mono-stable, and bistable and their applications.		at different duty cycles.	
1 0+h	34	Block diagram of IC555 and its working and applications.	10	Revision	
120	35	IC555 as monostable and astable multi- vibrator and bistable multivibrator.	12		

	36	Assignment topic/sessional.		
	37	Characteristics of an ideal operational amplifier and its block diagram.		To use IC 741 (op-amp) as
13^{th}	38	IC-741 and its pin configuration	13	1.Inverter 2 Addor
13 th	39	Definition of differential voltage gain, CMRR, PSRR, slew rate and input offset current.		3.Subtractor 4.Integrator
	40	Operational amplifier as an inverter, scale change, adder Subtractor, differentiator, and integrator.		To realize positive and negative fixed voltage DC power supply using three terminal voltage
14 th	41	Operational amplifier as an inverter, scale change, adder Subtractor, differentiator, and integrator	14	
	42	Operational amplifier as an inverter, scale change, adder Subtractor, differentiator, and integrator.		regulator IC (7805, 7812
15 th	43	Concept of DC power supply, line and load regulation		Prototypo making/
	44	44 Concept of fixed voltage, IC regulators 9like 7805, 7905), and variable		practice
	45	Voltage regulator like (IC 723)		
	46	Revision/ seminar		
16 th	47	Revision/ Seminar	16	Viva Voice
	48	Sessional		

Name of Faculty: MANJU KAUSHIK

Discipline: Electronics & Communication Engg.

Semester: 2nd

Subject: Electronic Instrument and Measurement (EIM)

Lesson Plan Duration: 15 weeks

Work Load (Lecture /Practical) per week in hours: Lecture: 3 Practical: 4

Week		Theory	Date of Execution	Practical		Date of Execution
	Lectur e Day	Topic (Including assignment/test)		Practical Day	Торіс	
1st	1 st	Basics of instruments and Measurements		1st (G1)	Introduction & Familiarization with new lab equipment.	
	2nd	Method of measurement, types of instruments		2nd (G2)	Introduction & Familiarization with new lab equipment.	
	3rd	Specifications of instruments: Accuracy, precision, sensitivity, resolution, range				
2nd	4th	Errors in measurement, sources of errors, limiting errors, loading effect		3rd (G1)	Measurement of voltage, resistance and current using analog multi meter	
	500	standards and calibration		4th (G2)	resistance and current using analog multi meter	
	6 th	Introduction to Voltage, Current and Resistance Measurement Moving Coil and Moving Iron Instruments				
3rd	7 th	Principles of measurement of DC voltage, DC current		5th (G1)	Measurement of voltage, resistance and current using digital multi meter	
	8th	Principles of measurement of AC voltage, AC current,		6th (G2)	Measurement of voltage, resistance and current using digital multi meter	
	9th	Principles of operation and construction of permanent magnet moving coil (PMMC) instruments				
4th	10 th	Continued Principles of operation and construction of permanent magnet moving coil (PMMC) instruments		7th (G1)	Revision	
	11 th	Principles of operation and construction of Moving iron type instruments,		8th (G2)	Revision	
	12 th	Continued Principles of operation and construction of Moving iron type instruments, VOM Meter				
5th	13 th	Introduction to Cathode Ray Oscilloscope		9th (G1)	To study the front panel controls of CRO	
	14 th	Construction and working of Cathode Ray Tube(CRT)		10th (G2)	To study the front panel controls of CRO	

	15 th	Continued Construction and working of Cathode Ray Tube(CRT)				
6 th	16 th	Block diagram description of a basic CRO and triggered sweep oscilloscope, front panel controls	11	Lth (G1)	Measurement of voltage, frequency, time period and phase using CRO	
	17 th	Continued Block diagram description of a basic CRO and triggered sweep oscilloscope, front panel controls	12	2th (G2)	Measurement of voltage, frequency, time period and phase using CRO	
	18 th	Specifications of CRO and their Applications				
7 th	19 th	Measurement of current, voltage, frequency using CRO	13	8th (G1)	Measurement of voltage, frequency, time and phase using DSO	
	20 th	Measurement of time period and phase using CRO , Lissajous pattern	14	lth (G2)	Measurement of voltage, frequency, time and phase using DSO	
	21 st	Digital storage oscilloscope (DSO) : block diagram and working principle				
8th	22nd	Continued Digital storage oscilloscope (DSO) : block diagram and working principle	15	5th (G1)	Revision	
	23rd	Introduction to Impedance Bridges, Q Meter and Function Generator	16	5th (G2)	Revision	
	24 th	Wheat stone bridge				
9th	25 th	AC bridges: Maxwell's induction bridge, Hay's bridge	17	7th (G1)	Measurement of phase using lissajous pattern on CRO.	
	26 th	AC bridges: De-Sauty's bridge,	18	3th (G2)	Measurement of phase using lissajous pattern on CRO.	
	27 th	Block diagram and workig principle of Q meter.				
10 th	28 th	Explanation of block diagram, specifications of low frequency generators.	19	9th (G1)	Measurement of unknown resistance using Wheat Stone bridge.	
	29th	Explanation of block diagram, specifications of RF generators.	20)th (G2)	Measurement of unknown resistance using Wheat Stone bridge.	
	30 th	Pulse generator				
11 th	31 st	Function generator	21	Lst (G1)	Measurement of Q of a coil	
	32nd	Problem Discussion	22 (G	nd 2)	Measurement of Q of a coil	
	33rd	Revision				
12 th	34th	Introduction to Digital Instruments	23	3rd (G1)	Measurement of inductance using Hay's Bridge.	

	35th	Comparison of analog and digital instruments	24th (G2)	Measurement of inductance using Hay's Bridge.	
	36 th	Block diagram and working of a digital multi-meter			
13 th	37 th	Continued Block diagram and working of a digital multi-meter	25th (G1)	Measurement of inductance using Maxwell Induction Bridge.	
	38th	Applications and Limitations of digital multi-meters.	26th (G2)	Measurement of inductance using Maxwell Induction Bridge.	
	39th	Continued Applications and Limitations of digital multi-meters.			
14 th	40 th	Problem Discussion	27th (G1)	Measurement of capacitance using De Sauty's Bridge.	
	41 st	Working principle of logic probe, logic pulser,	28th (G2)	Measurement of capacitance using De Sauty's Bridge.	
	42nd	Continued Working principle of logic probe, logic pulser			
15 th	43rd	Revision	29th (G1)	Revision	
	44th	Revision	30th (G2)	Revision	
	45 th	Revision			